
A Brief Introduction to the Design of UBIFS
Document version 0.1

by Adrian Hunter 27.3.2008

A file system developed for flash memory requires out-of-place updates . This is because flash

memory must be erased before it can be written to, and it can typically only be written once before
needing to be erased again. If eraseblocks were small and could be erased quickly, then they could
be treated the same as disk sectors, however that is not the case. To read an entire eraseblock, erase
it, and write back updated data typically takes 100 times longer than simply writing the updated data
to a different eraseblock that has already been erased. In other words, for small updates, in-place
updates can take 100 times longer than out-of-place updates.

Out-of-place updating requires garbage collection. As data is updated out-of-place, eraseblocks
begin to contain a mixture of valid data and data which has become obsolete because it has been
updated some place else. Eventually, the file system will run out of empty eraseblocks, so that
every single eraseblock contains a mixture of valid data and obsolete data. In order to write new
data somewhere, one of the eraseblocks must be emptied so that it can be erased and reused. The
process of identifying an eraseblock with a lot of obsolete data, and moving the valid data to another

eraseblock, is called garbage collection.

Garbage collection suggests the benefits of node-structure. In order to garbage collect an

eraseblock, a file system must be able to identify the data that is stored there. This is the opposite of
the usual indexing problem facing file systems. A file system usually starts with a file name and has
to find the data that belongs to that file. Garbage collection starts with data that may belong to any
file (or no file if it is obsolete) and must find which file, if any, it belongs to. One way to solve that
problem is to store metadata in line with the file data. This combination of data and metadata is

called a node. Each node records which file (more specifically inode number) that the node

belongs to and what data (for example file offset and data length) is contained in the node. Both
JFFS2 and UBIFS follow a node-structured design, that enables their garbage collectors to read
eraseblocks directly and determine what data needs to be moved and what can be discarded, and to
update their indexes accordingly.

The big difference between JFFS2 and UBIFS is that UBIFS stores the index on flash whereas
JFFS2 stores the index only in main memory, rebuilding it when the file system is mounted.
Potentially that places a limit on the maximum size of a JFFS2 file system, because the mount time
and memory usage grow linearly with the size of the flash. UBIFS was designed specifically to
overcome that limitation.

Unfortunately, storing the index on flash is very complex because the index itself must be updated
out-of-place. When one part of the index is updated out-of-place, then any other parts of the index
that reference the updated part, must also be updated. And then, in turn, the parts that reference
those parts must be updated. The solution to this seemingly never-ending cascade of updates is to

use a wandering tree.

In the case of the UBIFS wandering tree (which is technically a B+tree), only the leaves of the tree

contain file information. They are valid nodes of the file system. The internal elements of the tree

are index nodes and contain only references to their children. That is, an index node records the on-

flash position of its child nodes. So the UBIFS wandering tree can be viewed as having two parts.
A top part consisting of index nodes that create the structure of the tree, and a bottom part
consisting of leaf nodes that hold the actual file data. The top part is referred to simply as the

index. An update to the file system consists of creating a new leaf node and adding it, or replacing

it into the wandering tree. In order to do that, the parent index node must also be replaced, and its
parent, and so on up to the root of the tree. The number of index nodes that have to be replaced is
equal to the height of the tree. There just remains the question of how to know where the root of the
tree is. In UBIFS, the position of the root index node is stored in the master node.

The master node stores the position of all on-flash structures that are not at fixed logical positions.

The master node itself is written repeatedly to logical eraseblocks (LEBs) one and two. LEBs are

an abstraction created by UBI. UBI maps physical eraseblocks (PEBs) to LEBs, so LEB one and

two can be anywhere on the flash media (strictly speaking, the UBI device), however UBI always
records where they are. Two eraseblocks are used in order to keep two copies of the master node.

This is done for the purpose of recovery, because there are two situations that can cause a corrupt

or missing master node. The first is that there could be a loss of power at the same instant that the
master node is being written. The second is that there could be degradation or corruption of the
flash media itself. In the first case, recovery is possible because the previous version of the master
node can be used. In the second case, recovery is not possible because it cannot be determined
reliably what is a valid master node version. In that latter case, a userspace utility program would
be needed to analyze all the nodes on the media and attempt to fix or recreate corrupt or missing
nodes. Having two copies of the master node makes it possible to determine which situation has
arisen, and respond accordingly.

The first LEB is not LEB one, it is LEB zero. LEB zero stores the superblock node. The

superblock node contains file system parameters that change rarely if at all. For example, the flash

geometry (eraseblock size, number of eraseblocks etc) is stored in the superblock node. At present,
there is only one situation where the superblock node gets rewritten, which is when an automatic
resize occurs. UBIFS presently has a very limited ability to resize to grow bigger, but only to a
maximum size specified when the file system is created. This mechanism is needed because the
actual size of a flash partition varies due to the presence of a variable number of bad eraseblocks.

So when a file system image is created by mkfs.ubifs, the maximum number of eraseblocks is

specified and the image records this, and the actual number of eraseblocks used, in the superblock
node. When UBIFS is mounted on a partition (actually a UBI volume), if the number of
eraseblocks is greater than that recorded in the superblock node and less than the maximum number
of eraseblocks (also recorded in the superblock node), then the UBIFS file system is automatically
resized to fit the partition (UBI volume).

There are in fact six areas in UBIFS whose position is fixed at the time the file system is created.

The first two areas have already been described. The superblock area is LEB zero. The superblock
node is always at offset zero, and the superblock LEB is written using UBI's atomic LEB change
facility which guarantees that the LEB is updated successfully or not at all. The next area is the
master node area. It occupies LEB one and LEB two. In general, those two LEBs contain identical
data. The master node is written to successive positions in each LEB until there is no more space, at
which point the LEBs are unmapped and the master node written at offset zero (which automatically
causes UBI to map an erased LEB). Note that the master node LEBs are not both unmapped at the
same time because that would leave the file system temporarily with no valid master node. The
other UBIFS areas are: the log area (or simply the log), the LEB properties tree (LPT) area, the
orphan area and the main area.

The log is a part of UBIFS's journal. The purpose of the UBIFS journal is to reduce the frequency

of updates to the on-flash index. Recall, that the index consists of the top part of the wandering tree
that is made up of only index nodes, and that to update the file system a leaf node must be added or
replaced in the wandering tree and all the ancestral index nodes updated accordingly. It would be
very inefficient if the on-flash index were updated every time a leaf node was written, because many
of the same index nodes would be written repeatedly, particularly towards the top of the tree.
Instead, UBIFS defines a journal where leaf nodes are written but not immediately added to the on-
flash index. Note that the index in memory (see TNC) is updated. Periodically, when the journal is

considered reasonably full, it is committed. The commit process consists of writing the new

version of the index and the corresponding master node.

The existence of the journal means that when UBIFS is mounted, the on-flash index is out-of-date.
In order to bring it up-to-date, the leaf nodes in the journal must be read and reindexed. This

process is called the replay because it replays the journal. Note, that the bigger the journal, the

longer it will take to replay, and the longer UBIFS will take to mount. On the other hand, a bigger
the journal needs to be committed less often, which make the file system more efficient. The size

of the journal is a parameter to the mkfs.ubifs program, so it can be chosen to meet the

requirements of the system. However, by default UBIFS does not employ its fast unmount option,

and instead runs a commit before unmounting. That causes the journal to be almost empty when the
file system is mounted again, which makes the mount very quick indeed. It is a good trade-off
because the commit process itself is generally quite quick, taking a fraction of a second.

Note that the commit process does not move the leaf nodes from the journal. Instead, the journal
moves. It is the purpose of the log to record where the journal is. The log contains two types of

nodes. A commit start node, that records that a commit has begun, and reference nodes that

record the LEB numbers of main area LEBs that make up the rest of the journal. Those LEBs are

called buds, so the journal consists of the log and the buds. The log is a finite size and may be

considered to be a circular buffer. After a commit, the reference nodes that recorded the previous
position of the journal are no longer needed so the tail of the log is erased at the same rate that the
head of the log is extended. While the commit-start node records the start of commit, the end of
commit is defined to be when the master node is written, because the master node points to the new
position of the log tail. If the commit is not completed because the file system is unmounted

uncleanly (e.g. power loss), then the replay process replays both the old and new journal.

The replay process is complicated by several issues. The first complication is that the leaf nodes

must be replayed in order. Because UBIFS employs a multiheaded journal, the order that the leaf

nodes were written is not simply the order that the corresponding bud eraseblocks were referenced
in the log. In order to sequence leaf nodes, every node contains a 64-bit sequence number that
increments for the lifetime of the file system. The replay first reads all the leaf nodes in the journal
and places them in a RB-tree sorted by sequence number. The RB-tree is then processed in order
and the (in-memory) index updated accordingly.

The next complication is that the replay must handle deletions and truncations. There are two kinds
of deletion. Inode deletion which corresponds to the deletion of files and directories, and directory
entry deletion which corresponds to unlinking and renaming. In UBIFS, inodes have a

corresponding inode node which records the number of directory entry links, more simply known

as the link count. When an inode is deleted, an inode node with a link count of zero is written to the
journal. In that case, instead of adding that leaf node to the index, it is removed from the index
along with all index entries for nodes with that inode number. In the case of deleted directory

entries, a directory entry node is written to the journal but the inode number that that directory

entry previously referred to, is set to zero. Note that there are two inode numbers associated with a
directory entry. The inode number of the parent directory, and the inode number of the file or sub-
directory that the directory entry refers to. It is the latter inode number that is set to zero in the
deletion directory entry node. When the replay processes a directory entry with an inode number of
zero, it removes that entry from the index instead of adding it.

Truncations, of course, change the length of a file. In fact, a truncation can extend the length of a
file as well as reduce it. For UBIFS, extending the length of a file requires no special handling. In
file system parlance, extending the length of a file via truncation creates a "hole" which is an
unwritten part of a file that is assumed to contain all zero bytes. UBIFS does not index holes and
does not store any nodes corresponding to holes. Instead a hole is an index entry that is not there.
When UBIFS looks up the index and finds no index entry, it is defined to be a hole and the zeroed
data created accordingly. On the other hand, truncations that reduce the length of a file require that
any data nodes that fall outside the new file length be removed from the index. In order to have that
happen, truncation nodes are written to the journal that record the old and new file length. The
replay processes those nodes by removing the corresponding index entries.

The next complication is that the replay must bring the LEB properties tree (LPT) area up-to-date.

LEB properties are three values that need to be known for all LEBs in the main area. Those values

are: free space, dirty space and whether the eraseblock is an index eraseblock or not. Note that
index nodes and non-index nodes are never mixed within the same eraseblock, hence an index
eraseblock is an eraseblock that contains (only) index nodes, and a non-index eraseblock is an
eraseblock that contains (only) non-index nodes. Free space is the number of bytes at the end of an
eraseblock that have not been written to yet, and so can be filled with more nodes. Dirty space is
the number of bytes taken up by obsolete nodes and padding, that can potentially be reclaimed by

garbage collection. The LEB properties are essential to find space to add to the journal, or the
index, and to find the dirtiest eraseblocks to garbage collect. Every time a node is written, the free
space must be reduced for that eraseblock. Every time a node is obsoleted or a padding node is
written, or a truncation or deletion node is written, dirty space must be increased for that eraseblock.
When an eraseblock is allocated to the index, it must be recorded so that, for example, an index
eraseblock with free space is not allocated to the journal - which would cause index and non-index
nodes to be mixed. Note, the reason that index and non-index nodes may not be mixed has to do
with budgeting which is described further on.

Generally speaking, the index subsystem itself takes care of informing the LEB properties
subsystem of LEB properties changes. The complexity that LEB properties raises in the replay
happens when a garbage collected eraseblock has been added to the journal. Like the index, the
LPT area is only updated by the commit. Like the index, the on-flash LPT is out-of-date at mount
time and must be brought up to date by the replay process. So the on-flash LEB properties of the
garbage collected LEB reflect the state as at the last commit. The replay will begin to update the
LEB properties, however some of those changes occurred before the garbage collection, and some
of them afterwards. Depending at which point the garbage collection occurred, the final LEB
property values will be different. In order to handle that, the replay inserts a reference into its RB-
tree to represent the point at which the LEB was added to the journal (using the sequence number of
the log reference node). That enables the replay to correctly adjust the LEB property values when
the replay RB-tree is applied to the index.

Another complication for the replay is the effect of the recovery on the replay. UBIFS records on
the master node whether the file system was unmounted cleanly. If it was not, then certain error
conditions trigger the recovery to make fixes to the file system. The replay is affected in two main
ways. First, a bud eraseblock may be corrupted because it was being written at the time of a
unclean unmount. Secondly, a log eraseblock may be corrupted for precisely the same reason. The
replay handles those situations by passing the eraseblock to the recovery to try to fix the nodes in
those eraseblocks. If the file system is mounted read-write, then the recovery will do the necessary
fixes on the flash. In that way, the integrity of a recovered UBIFS file system is as perfect as one
that has not suffered an unclean unmount. If the file system is mounted read-only, the recovery is
deferred until it is mounted read-write.

The final complication is that some of the leaf nodes referenced by the on-flash index may not exist
anymore. That happens when the nodes have been deleted and the eraseblock that contained them
has subsequently been garbage collected. Generally, deleted leaf nodes do not affect the replay
because they are not part of the index. However, one aspect of the structure of the index does
require that leaf nodes are sometimes read in order to update the index. That happens because of
directory entry nodes (and also extended attribute entry nodes). In UBIFS, a directory consists of
an inode node and one directory entry node for each of the directory entries. Access to the index is
done using a node key, which is a 64-bit value that identifies the node. In most cases, the node key
uniquely identifies the node and so the index can be updated using just the key. Unfortunately, in
the case of directory entries (and extended attribute entries) the uniquely identifying information is
the name, which may be quite long (up to 255 characters in the case of UBIFS). To squeeze that

information into 64-bits, the name is hashed into a 29-bit value which is not unique to the name.

When two names give the same hash value, it is called a hash collision (or simply collision). In that

case, the leaf nodes must be read to resolve the collision by comparing the names stored in the leaf
nodes. So what happens if the leaf node is gone because of the reasons given above. It turns out
that it does not matter. Directory entry nodes (and extended attribute entry nodes) are only ever
added or removed - they are never replaced because the information they contain never changes. So
the outcome of the name comparison is known even though the node contained one of the names is
gone. When adding a hashed-key node, there will be no match. When removing a hashed-key
node, there will always be a match, either to an existing node, or to a missing node that has the
correct key. In order to provide this special index updating for the replay, a separate set of functions
is used (denoted in the code by the prefix "fallible").

After the log area, comes the LPT area. The size of the log area is defined when the file system is

created and consequently so is the start of the LPT area. At present, the size of the LPT area is
automatically calculated based on the LEB size and maximum LEB count specified when the file
system is created. Like the log area, the LPT area must never run out of space. Unlike the log area,
updates to the LPT area are not sequential in nature - they are random. In addition, the amount of
LEB properties data is potentially quite large and access to it must be scalable. The solution is to
store LEB properties in a wandering tree. In fact the LPT area is much like a miniature file system
in its own right. It has its own LEB properties - that is, the LEB properties of the LEB properties
area (called ltab). It has its own form of garbage collection. It has its own node structure that packs
the nodes as tightly as possible into bit-fields. However, like the index, the LPT area is updated
only during commit. Thus the on-flash index and the on-flash LPT represent what the file system
looked like as at the last commit. The difference between that and the actual state of the file system,
is represented by the nodes in the journal.

The LPT actually has two slightly different forms called the small model and the big model. The

small model is used when the entire LEB properties table can be written into a single eraseblock. In
that case, LPT garbage collection consists of just writing the whole table, which therefore makes all
other LPT area eraseblocks reusable. In the case of the big model, dirty LPT eraseblocks are
selected for LPT garbage collection, which consists of marking the nodes in that LEB as dirty, and
then writing out only the dirty nodes (as part of the commit). Also, in the case of the big model, a
table of LEB numbers is saved so that the entire LPT does not to be scanned looking for empty
eraseblocks when UBIFS is first mounted. In the small model, it is assumed that scanning the entire
table is not slow because it is small.

One of the main tasks of UBIFS is to access the index which is a wandering tree. To make that

efficient, index nodes are cached in memory in a structure called the tree node cache (TNC). The

TNC is B+tree that is node-for-node the same as the on-flash index, with the addition of all changes

made since the last commit. The nodes of the TNC are called znodes. Another way to look at that,

is that a znode when it is on-flash is called an index node, and an index node when it is in memory
is called a znode. Initially there are no znodes. When a lookup is done on the index, just the index
nodes that are needed are read and added to the TNC as znodes. When a znode needs to be

changed, it is marked as dirty which pins it in memory until the next commit at which time it
becomes clean again. At any time UBIFS memory shrinker may decide to free clean znodes in the
TNC, so that the amount of memory needed is proportional to the size of the parts of the index that

are in use, not the total size of the index. In addition, hanging off the bottom of the TNC is a leaf-

node cache (LNC) which is used only for directory entries (and extended attribute entries). The

LNC is needed to cache nodes read as a result of collision resolution or readdir operations. Because
the LNC is attached to the TNC it effectively gets shrunk when the TNC does.

The TNC is further complicated by the desire to make the commit have as little impact as possible
on other UBIFS operations. To do that, the commit is split into two main parts. The first part is

called commit start. During commit start the commit semaphore is down for writing, which

prevents all further updates to the journal. At that time, the TNC subsystem makes a list of the dirty
znodes and lays out the positions on flash where they will be written. Then the commit semaphore
is released, and a new journal begins to be used, while the commit is still running. The second part

of the commit is called commit end. During commit end, TNC writes the new index nodes but it

does so without any lock on TNC. That is TNC can be updated simultaneously as the new index is
being written to flash. That is accomplished by marking the znodes which are being committed as

copy-on-write. If a znode that is being committed needs to be changed, it is copied so that the

commit still sees the unchanged znode. In addition, the commit is mostly run by UBIFS
background thread so that user processes wait as little as possible for the commit to run.

Note that LPT follows the same commit strategy as TNC and they are both wandering trees
implemented as B+trees, resulting in a number of similarities in the code of LPT and TNC.

There are three important differences between UBIFS and JFFS2. The first has already been
mentioned: UBIFS has an on-flash index, JFFS2 does not - thus UBIFS is potentially scalable. The
second difference is implied: UBIFS runs on top of the UBI layer which runs on top of the MTD
subsystem, whereas JFFS2 runs directly over MTD. UBIFS benefits from the wear-leveling and
error handling of UBI at the cost of the flash space, memory and other resources taken by UBI. The

third important difference is that UBIFS allows writeback.

Writeback is a VFS facility that allows written data to be cached and not written immediately to the
media. That makes the system more responsive and potentially more efficient because updates to
the same file can be grouped together. The difficulty with supporting writeback is that it requires
that the file system know how much free space is available so that the cache is never bigger than the
space on the media. That is very difficult for UBIFS to determine, so an entire subsystem called

budgeting is dedicated to it. The difficulties are for several reasons.

The first reason is that UBIFS supports transparent compression. Because the amount of

compression is not known in advance, the amount of space needed is not known in advance.
Budgeting must assume the worst case, and assume that there is no compression. However, in many
cases that is a poor assumption. In order to overcome that, budgeting will begin to force writeback
when it detects that there is insufficient space.

The second reason that budgeting is difficult is that garbage collection is not guaranteed to be able
to reclaim all dirty space. UBIFS garbage collection processes one eraseblock at a time. In the case
of NAND flash, only complete NAND pages can be written at a time. A NAND eraseblock is made
up of some fixed whole number of NAND pages. UBIFS calls the NAND page size the minimal
I/O unit. Because UBIFS garbage collection processes one eraseblock at a time, if the dirty space is
less than the minimal I/O size, it cannot be reclaimed - it will end up as padding in the last NAND
page. When the dirty space in an eraseblock is less than the minimal I/O size, that space is called

dead space. Dead space is not reclaimable.

Similar to dead space is dark space. Dark space is when the dirty space in an eraseblock is less

that the maximum node size. In the worst case, the file system may be full of nodes of maximum
size and garbage collection will not result in pieces of free space that are large enough for another
maximum size node. So, in the worst case, dark space is not reclaimable, and in the best case it is
reclaimable. UBIFS budgeting must assume the worst case and so both dead space and dark space
and assumed to be unavailable. However, if there is insufficient space but a lot of dark space,
budgeting will itself run garbage collection to see if it reclaims more free space.

The third reason that budgeting is difficult is that cached data may be obsoleting data stored on
flash. Whether or not that is the case is not always known, and what the difference in compression
may be is certainly not known. This is another reason that budgeting forces writeback when it
calculates insufficient space. Only after trying writeback, garbage collection and committing the
journal, will budgeting give up and return ENOSPC (the no space error code).

Of course that means that UBIFS becomes less efficient as the file system becomes closer to being
full. In fact, all flash file systems become less efficient as the flash fills up. That is because it is
less likely that there is an empty eraseblock that has been erased in the background, and more likely
that garbage collection will have to run.

The fourth reason that budgeting is difficult is that deletions and truncations need to write new
nodes. Thus if the file system is really out of space, it becomes impossible to delete anything
because there is no room to write a deletion inode node, or a truncation node. To prevent that
situation, UBIFS always keeps back a some space and always allows deletions and truncations.

The next UBIFS area to describe is the orphan area. An orphan is an inode number whose inode

node has been committed to the index with a link count of zero. That happens when an open file is
deleted (unlinked) and then a commit is run. In the normal course of events the inode would be
deleted when the file is closed. However in the case of an unclean unmount, orphans need to be
accounted for. After an unclean unmount, the orphans' inodes must be deleted which means either
scanning the entire index looking for them, or keeping a list on flash somewhere. UBIFS
implements the latter approach.

The orphan area is a fixed number of LEBs situated between the LPT area and the main area. The

number of orphan area LEBs is specified when the file system is created. The minimum number is
1. The size of the orphan area should be so that it can hold the maximum number of orphans that are
expected to ever exist at one time. The number of orphans that can fit in a LEB is:
 (leb_size - 32) / 8
For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.

Orphans are accumulated in a RB-tree. When an inode's link count drops to zero, the inode number
is added to the RB-tree. It is removed from the tree when the inode is deleted. Any new orphans
that are in the orphan tree when the commit is run, are written to the orphan area in 1 or more
orphan nodes. If the orphan area is full, it is consolidated to make space. There is always enough
space because validation prevents the user from creating more than the maximum number of
orphans allowed.

The final UBIFS area is the main area. The main area contains the nodes that make up the file

system data and the index. A main area LEB may be an index eraseblock or a non-index eraseblock.
A non-index eraseblock may be a bud (part of the journal) or have been committed. A bud may be
currently one of the journal heads. A LEB that contains committed nodes can still become a bud if
it has free space. Thus a bud LEB has an offset from which journal nodes begin, although that
offset is usually zero.

UBIFS Source File List

budget.c budgeting
build.c module initialization, mounting and unmounting
commit.c commit management
compress.c compression management
debug.c debugging self-checks
debug.h debugging self-checks header
dir.c directory operations
file.c file operations
find.c find eraseblocks for various purposes e.g. G.C.
gc.c garbage collection
io.c node I/O
ioctl.c EXT2 compatible extended attribute ioctls
journal.c journal updates
key.h index key related functions
log.c log
lprops.c LEB properties
lpt.c LEB properties tree (LPT)
lpt_commit.c LPT commit
master.c master node
misc.h shared inline functions
orphan.c orphans
recovery.c recovery
replay.c replay
sb.c default file system creation and super block node
scan.c general purpose eraseblock scanner (e.g. used by G.C.)
shrinker.c memory shrinker for TNC
super.c super operations
tnc.c tree node cache (TNC)
tnc_commit.c TNC commit
ubifs.h internal definitions
ubifs-media.h on-flash structures and definitions
xattr.c extended attributes

UBIFS Glossary

B+tree Kind of tree used for UBIFS wandering tree.

base head Journal head used for non-data nodes. The base head provides

the integrity and recoverability of UBIFS by keeping all inode
nodes and directory entry nodes in sequence.

budgeting Estimation of free space.

bud An eraseblock used by the journal.

cnode Either a pnode or an nnode.

commit Process by which the index is updated.

commit start node Node written to the log when a commit starts.

common header Common header of all node types except nodes in the LPT

area.

data head Journal head used for data nodes. Potentially UBIFS could

have more than one data head which would assist in keeping
data nodes for each file grouped together rather than
interspersed. However presently there is only one data head.

directory entry node A node that contains a directory entry.

dirty space Space taken up on flash by obsolete nodes, padding nodes and

padding bytes.

eraseblock The smallest unit of flash memory that can be individually

erased.

extended attribute entry node A node that contains the name and inode number of an

extended attribute (same structure as a directory entry).

freeable LEB A LEB in the main area that contains only free space and dirty

space.

free space Space on flash that can be written to.

garbage collection The process of reclaiming dirty space to make free space.

garbage collection head Journal head used by the garbage collector. In order to move

and reindex nodes, the garbage collector just feeds them back
through the journal.

garbage collection LEB number LEB reserved for garbage collection (must always be one LEB

reserved), also known as gc_lnum.

index The top part of the UBIFS wandering tree consisting of index

nodes.

index LEB A LEB that contains (only) index nodes.

index node A node that forms the structure of the index. It contains the

keys and on-flash positions of its child nodes.

inode A file system object. In UBIFS, an inode may be a regular

file, a directory, a symbolic link, a special file, or an extended
attribute (xattr) value holder.

inode node A node that holds the metadata for an inode. Every inode has

exactly one (non-obsolete) inode node.

in-the-gaps method When the file system becomes full, the index cannot grow in

size and consequently must be updated in-place. This is done
by writing index nodes in-the-gaps created by obsolete index
nodes.

JFFS2 Journaling Flash File System 2 which is the quintessential

linux flash file system, however it is not scalable and the
present limit of its usage is 1 GiB.

journal The journal is like a miniature JFFS2 file system, storing

nodes without an on-flash index, so that index updates can be
grouped altogether. Like JFFS2 the journal must be scanned
at mount time.

journal head The position on-flash where the next node will be written.

UBIFS adopts a multiheaded journal with two main heads: the
base head and the data head.

key The key to the index. The index stores the position of all

nodes, and their keys. A node may be found by looking up its
key in the index. The key is a 64-bit value whose first 32 bits
are the inode number. The next 3 bits are node type, and the

remaining 29 bits vary depending on node type. UBIFS also
supports the possibility of changing the key format and allows
for up to 128-bits for the key.

LEB Logical eraseblock that is mapped to a physical eraseblock

(PEB) by UBI.

LEB properties Main area LEBs have three important values that are recorded

about them. These LEB properties are: amount of free space,
amount of dirty space, and whether the LEB contains index
nodes.

LNC Leaf node cache used to store directory entries and extended

attribute entries

log The part of the journal that records where the buds are.

LPT LEB properties tree, a wandering tree used to store LEB

properties.

main area LEBs that are used for data and the index.

master node The node that contains the positions of on-flash structures.

minimal I/O unit The smallest unit of flash memory that can be individually

written.

mkfs.ubifs The userspace program that creates UBIFS images.

MTD Memory Technology Device. A linux device layer for flash

memories.

node The logical component of node-structured flash file systems

like JFFS2 and UBIFS.

nnode Internal node of the LPT.

orphan area Area for storing the inode numbers of deleted by still open

inodes, needed for recovery from unclean unmounts.

orphan node The node used to store orphan information.

padding bytes Bytes written when the space to pad is too small for a padding

node.

padding node A node written to fill space, usually to the edge of a minimal

I/O unit.

PEB Physical eraseblock that is mapped to a logical eraseblock

(LEB) by UBI.

pnode Leaf node of the LPT which contains the actual LEB property

values.

recovery The functions by which UBIFS repairs itself after an unclean

unmount.

replay The process by which UBIFS reindexes the nodes in the

journal when the file system is mounted.

reference node Log nodes that store the LEB numbers of buds and their

offset.

shrinker A linux facility the requests that some memory be freed if

possible. UBIFS has a shrinker that frees clean znodes from
the TNC.

superblock node The node that records file system parameters that almost never

change.

TNC Tree Node Cache, UBIFS index in memory.

truncation node A node that records when a file is truncated and becomes

smaller.

UBI Unsorted Block Images module that provides wear-leveling,

bad-block handling, and the creation of logical volumes
mapping logical eraseblocks to physical eraseblocks.

UBIFS UBI File System.

unclean unmount When the file system does not have a chance to write all

cached data and metadata, for example because of a loss of
power.

wandering tree A tree that moves in a way to allow out-of-place updates.

znode An index node in memory. Znodes form the TNC.

