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A file system developed for flash memory requires  out-of-place   updates  .  This is because flash 

memory must be erased before it can be written to, and it can typically only be written once before 
needing to be erased again.  If eraseblocks were small and could be erased quickly, then they could 
be treated the same as disk sectors, however that is not the case.  To read an entire eraseblock, erase 
it, and write back updated data typically takes 100 times longer than simply writing the updated data 
to a different eraseblock that has already been erased.  In other words, for small updates, in-place 
updates can take 100 times longer than out-of-place updates.

Out-of-place updating requires  garbage collection.  As data is updated out-of-place, eraseblocks 
begin to contain a mixture of valid data and data which has become obsolete because it has been 
updated some place else.  Eventually, the file system will run out of empty eraseblocks, so that 
every single eraseblock contains a mixture of valid data and obsolete data.  In order to write new 
data somewhere, one of the eraseblocks must be emptied so that it can be erased and reused.  The 
process of identifying an eraseblock with a lot of obsolete data, and moving the valid data to another 

eraseblock, is called garbage collection.

Garbage  collection suggests  the  benefits  of  node-structure.   In  order  to  garbage  collect  an 

eraseblock, a file system must be able to identify the data that is stored there.  This is the opposite of 
the usual indexing problem facing file systems.  A file system usually starts with a file name and has 
to find the data that belongs to that file.  Garbage collection starts with data that may belong to any 
file (or no file if it is obsolete) and must find which file, if any, it belongs to.  One way to solve that 
problem is to store metadata in line with the file data.  This combination of data and metadata is 

called  a  node.   Each node records  which file  (more  specifically  inode number)  that  the  node 

belongs to and what data (for example file offset and data length) is contained in the node.  Both 
JFFS2 and UBIFS follow a node-structured design, that enables their garbage collectors to read 
eraseblocks directly and determine what data needs to be moved and what can be discarded, and to 
update their indexes accordingly.

The big difference between JFFS2 and UBIFS is that UBIFS stores the index on flash whereas 
JFFS2  stores  the  index only  in  main  memory,  rebuilding  it  when the  file  system is  mounted. 
Potentially that places a limit on the maximum size of a JFFS2 file system, because the mount time 
and memory usage grow linearly with the size of the flash.  UBIFS was designed specifically to 
overcome that limitation.

Unfortunately, storing the index on flash is very complex because the index itself must be updated 
out-of-place.  When one part of the index is updated out-of-place, then any other parts of the index 
that reference the updated part, must also be updated.  And then, in turn, the parts that reference 
those parts must be updated.  The solution to this seemingly never-ending cascade of updates is to 

use a wandering tree.



In the case of the UBIFS wandering tree (which is technically a B+tree), only the leaves of the tree 

contain file information.  They are valid nodes of the file system.  The internal elements of the tree 

are index nodes and contain only references to their children.  That is, an index node records the on-

flash position of its child nodes.  So the UBIFS wandering tree can be viewed as having two parts. 
A  top  part  consisting  of  index  nodes  that  create  the  structure  of  the  tree,  and  a  bottom part 
consisting of leaf nodes that hold the actual file data.  The top part is referred to simply as the 

index.  An update to the file system consists of creating a new leaf node and adding it, or replacing 

it into the wandering tree.  In order to do that, the parent index node must also be replaced, and its 
parent, and so on up to the root of the tree.  The number of index nodes that have to be replaced is 
equal to the height of the tree.  There just remains the question of how to know where the root of the 
tree is.  In UBIFS, the position of the root index node is stored in the master node.

The master node stores the position of all on-flash structures that are not at fixed logical positions. 

The master node itself is written repeatedly to logical eraseblocks (LEBs) one and two.  LEBs are 

an abstraction created by UBI.  UBI maps physical eraseblocks (PEBs) to LEBs, so LEB one and 

two can be anywhere on the flash media (strictly speaking, the UBI device), however UBI always 
records where they are.  Two eraseblocks are used in order to keep two copies of the master node. 

This is done for the purpose of recovery, because there are two situations that can cause a corrupt 

or missing master node.  The first is that there could be a loss of power at the same instant that the 
master node is being written.  The second is that there could be degradation or corruption of the 
flash media itself.  In the first case, recovery is possible because the previous version of the master 
node can be used.  In the second case, recovery is not possible because it cannot be determined 
reliably what is a valid master node version.  In that latter case, a userspace utility program would 
be needed to analyze all the nodes on the media and attempt to fix or recreate corrupt or missing 
nodes.  Having two copies of the master node makes it possible to determine which situation has 
arisen, and respond accordingly.

The  first  LEB is  not  LEB one,  it  is  LEB zero.   LEB zero  stores  the  superblock  node.   The 

superblock node contains file system parameters that change rarely if at all.  For example, the flash 

geometry (eraseblock size, number of eraseblocks etc) is stored in the superblock node.  At present, 
there is only one situation where the superblock node gets rewritten, which is when an automatic 
resize occurs.  UBIFS presently has a very limited ability to resize to grow bigger, but only to a 
maximum size specified when the file system is created.  This mechanism is needed because the 
actual size of a flash partition varies due to the presence of a variable number of bad eraseblocks. 

So when a file system image is created by  mkfs.ubifs,  the maximum number of eraseblocks is 

specified and the image records this, and the actual number of eraseblocks used, in the superblock 
node.   When  UBIFS  is  mounted  on  a  partition  (actually  a  UBI  volume),  if  the  number  of 
eraseblocks is greater than that recorded in the superblock node and less than the maximum number 
of eraseblocks (also recorded in the superblock node), then the UBIFS file system is automatically 
resized to fit the partition (UBI volume).

There are in fact six areas in UBIFS whose position is fixed at the time the file system is created. 



The first two areas have already been described.  The superblock area is LEB zero.  The superblock 
node is always at offset zero, and the superblock LEB is written using UBI's atomic LEB change 
facility which guarantees that the LEB is updated successfully or not at all.  The next area is the 
master node area.  It occupies LEB one and LEB two.  In general, those two LEBs contain identical 
data.  The master node is written to successive positions in each LEB until there is no more space, at 
which point the LEBs are unmapped and the master node written at offset zero (which automatically 
causes UBI to map an erased LEB).  Note that the master node LEBs are not both unmapped at the 
same time because that would leave the file system temporarily with no valid master node.  The 
other UBIFS areas are: the log area (or simply the log), the LEB properties tree (LPT) area, the 
orphan area and the main area.

The log is a part of UBIFS's journal.  The purpose of the UBIFS journal is to reduce the frequency 

of updates to the on-flash index.  Recall, that the index consists of the top part of the wandering tree 
that is made up of only index nodes, and that to update the file system a leaf node must be added or 
replaced in the wandering tree and all the ancestral index nodes updated accordingly.  It would be 
very inefficient if the on-flash index were updated every time a leaf node was written, because many 
of  the  same index nodes  would  be  written repeatedly, particularly  towards  the  top  of  the  tree. 
Instead, UBIFS defines a journal where leaf nodes are written but not immediately added to the on-
flash index.  Note that the index in memory (see TNC) is updated.  Periodically, when the journal is 

considered  reasonably full,  it  is  committed.   The  commit process consists  of  writing  the  new 

version of the index and the corresponding master node.

The existence of the journal means that when UBIFS is mounted, the on-flash index is out-of-date. 
In order to bring it up-to-date,  the leaf nodes in the journal must be read and reindexed.  This 

process is called the  replay because it replays the journal.  Note, that the bigger the journal, the 

longer it will take to replay, and the longer UBIFS will take to mount.  On the other hand, a bigger 
the journal needs to be committed less often, which make the file system more efficient.  The size 

of  the  journal  is  a  parameter  to  the  mkfs.ubifs program,  so  it  can  be  chosen  to  meet  the 

requirements of the system.  However, by default UBIFS does not employ its fast unmount option, 

and instead runs a commit before unmounting.  That causes the journal to be almost empty when the 
file system is mounted again, which makes the mount very quick indeed.  It is a good trade-off 
because the commit process itself is generally quite quick, taking a fraction of a second.

Note that the commit process does not move the leaf nodes from the journal.  Instead, the journal 
moves.  It is the purpose of the log to record where the journal is.  The log contains two types of 

nodes.  A  commit start node, that records that a commit has begun, and  reference nodes that 

record the LEB numbers of main area LEBs that make up the rest of the journal.  Those LEBs are 

called buds, so the journal consists of the log and the buds.  The log is a finite size and may be 

considered to be a circular buffer.  After a commit, the reference nodes that recorded the previous 
position of the journal are no longer needed so the tail of the log is erased at the same rate that the 
head of the log is extended.  While the commit-start node records the start of commit, the end of 
commit is defined to be when the master node is written, because the master node points to the new 
position of the log tail.   If  the commit  is  not completed because the file  system is unmounted 



uncleanly (e.g. power loss), then the replay process replays both the old and new journal.

The replay process is complicated by several issues.  The first complication is that the leaf nodes 

must be replayed in order.  Because UBIFS employs a multiheaded journal, the order that the leaf 

nodes were written is not simply the order that the corresponding bud eraseblocks were referenced 
in the log.  In order to sequence leaf nodes, every node contains a 64-bit sequence number that 
increments for the lifetime of the file system.  The replay first reads all the leaf nodes in the journal 
and places them in a RB-tree sorted by sequence number.  The RB-tree is then processed in order 
and the (in-memory) index updated accordingly.

The next complication is that the replay must handle deletions and truncations.  There are two kinds 
of deletion.  Inode deletion which corresponds to the deletion of files and directories, and directory 
entry  deletion  which  corresponds  to  unlinking  and  renaming.   In  UBIFS,  inodes  have  a 

corresponding inode node which records the number of directory entry links, more simply known 

as the link count.  When an inode is deleted, an inode node with a link count of zero is written to the 
journal.  In that case, instead of adding that leaf node to the index, it is removed from the index 
along with all index entries for nodes with that inode number.  In the case of deleted directory 

entries, a  directory entry node is written to the journal but the inode number that that directory 

entry previously referred to, is set to zero.  Note that there are two inode numbers associated with a 
directory entry.  The inode number of the parent directory, and the inode number of the file or sub-
directory that the directory entry refers to.  It is the latter inode number that is set to zero in the 
deletion directory entry node.  When the replay processes a directory entry with an inode number of 
zero, it removes that entry from the index instead of adding it.

Truncations, of course, change the length of a file.  In fact, a truncation can extend the length of a 
file as well as reduce it.  For UBIFS, extending the length of a file requires no special handling.  In 
file  system parlance,  extending the length of a file  via  truncation creates a  "hole"  which is  an 
unwritten part of a file that is assumed to contain all zero bytes.  UBIFS does not index holes and 
does not store any nodes corresponding to holes.  Instead a hole is an index entry that is not there. 
When UBIFS looks up the index and finds no index entry, it is defined to be a hole and the zeroed 
data created accordingly.  On the other hand, truncations that reduce the length of a file require that 
any data nodes that fall outside the new file length be removed from the index.  In order to have that 
happen, truncation nodes are written to the journal that record the old and new file length.  The 
replay processes those nodes by removing the corresponding index entries.

The next complication is that the replay must bring the LEB properties tree (LPT) area up-to-date. 

LEB properties are three values that need to be known for all LEBs in the main area.  Those values 

are: free space, dirty space and whether the eraseblock is an index eraseblock or not.  Note that 
index nodes and non-index nodes are never mixed within the same eraseblock,  hence an index 
eraseblock is  an eraseblock that  contains  (only) index nodes,  and a  non-index eraseblock is  an 
eraseblock that contains (only) non-index nodes.  Free space is the number of bytes at the end of an 
eraseblock that have not been written to yet, and so can be filled with more nodes.  Dirty space is 
the number of bytes taken up by obsolete nodes and padding, that can potentially be reclaimed by 



garbage collection.  The LEB properties are essential to find space to add to the journal, or the 
index, and to find the dirtiest eraseblocks to garbage collect.  Every time a node is written, the free 
space must be reduced for that eraseblock.  Every time a node is obsoleted or a padding node is 
written, or a truncation or deletion node is written, dirty space must be increased for that eraseblock. 
When an eraseblock is allocated to the index, it must be recorded so that, for example, an index 
eraseblock with free space is not allocated to the journal - which would cause index and non-index 
nodes to be mixed.  Note, the reason that index and non-index nodes may not be mixed has to do 
with budgeting which is described further on.

Generally  speaking,  the  index  subsystem  itself  takes  care  of  informing  the  LEB  properties 
subsystem of LEB properties changes.  The complexity that LEB properties raises in the replay 
happens when a garbage collected eraseblock has been added to the journal.  Like the index, the 
LPT area is only updated by the commit.  Like the index, the on-flash LPT is out-of-date at mount 
time and must be brought up to date by the replay process.  So the on-flash LEB properties of the 
garbage collected LEB reflect the state as at the last commit.  The replay will begin to update the 
LEB properties, however some of those changes occurred before the garbage collection, and some 
of  them afterwards.   Depending at  which point  the garbage collection occurred,  the final  LEB 
property values will be different.  In order to handle that, the replay inserts a reference into its RB-
tree to represent the point at which the LEB was added to the journal (using the sequence number of 
the log reference node).  That enables the replay to correctly adjust the LEB property values when 
the replay RB-tree is applied to the index.

Another complication for the replay is the effect of the recovery on the replay.  UBIFS records on 
the master node whether the file system was unmounted cleanly.  If it was not, then certain error 
conditions trigger the recovery to make fixes to the file system.  The replay is affected in two main 
ways.   First,  a bud eraseblock may be corrupted because it  was being written at  the time of a 
unclean unmount.  Secondly, a log eraseblock may be corrupted for precisely the same reason.  The 
replay handles those situations by passing the eraseblock to the recovery to try to fix the nodes in 
those eraseblocks.  If the file system is mounted read-write, then the recovery will do the necessary 
fixes on the flash.  In that way, the integrity of a recovered UBIFS file system is as perfect as one 
that has not suffered an unclean unmount.  If the file system is mounted read-only, the recovery is 
deferred until it is mounted read-write.

The final complication is that some of the leaf nodes referenced by the on-flash index may not exist 
anymore.  That happens when the nodes have been deleted and the eraseblock that contained them 
has subsequently been garbage collected.  Generally, deleted leaf nodes do not affect the replay 
because they are not part of the index.  However, one aspect of the structure of the index does 
require that leaf nodes are sometimes read in order to update the index.  That happens because of 
directory entry nodes (and also extended attribute entry nodes).  In UBIFS, a directory consists of 
an inode node and one directory entry node for each of the directory entries.  Access to the index is 
done using a node key, which is a 64-bit value that identifies the node.  In most cases, the node key 
uniquely identifies the node and so the index can be updated using just the key.  Unfortunately, in 
the case of directory entries (and extended attribute entries) the uniquely identifying information is 
the name, which may be quite long (up to 255 characters in the case of UBIFS).  To squeeze that 



information into 64-bits, the name is hashed into a 29-bit value which is not unique to the name. 

When two names give the same hash value, it is called a hash collision (or simply collision).  In that 

case, the leaf nodes must be read to resolve the collision by comparing the names stored in the leaf 
nodes.  So what happens if the leaf node is gone because of the reasons given above.  It turns out 
that it does not matter.  Directory entry nodes (and extended attribute entry nodes) are only ever 
added or removed - they are never replaced because the information they contain never changes.  So 
the outcome of the name comparison is known even though the node contained one of the names is 
gone.  When adding a hashed-key node, there will be no match.  When removing a hashed-key 
node, there will always be a match, either to an existing node, or to a missing node that has the 
correct key.  In order to provide this special index updating for the replay, a separate set of functions 
is used (denoted in the code by the prefix "fallible").

After the log area, comes the LPT area.  The size of the log area is defined when the file system is 

created and consequently so is the start of the LPT area.  At present, the size of the LPT area is 
automatically calculated based on the LEB size and maximum LEB count specified when the file 
system is created.  Like the log area, the LPT area must never run out of space.  Unlike the log area, 
updates to the LPT area are not sequential in nature - they are random.  In addition, the amount of 
LEB properties data is potentially quite large and access to it must be scalable.  The solution is to 
store LEB properties in a wandering tree.  In fact the LPT area is much like a miniature file system 
in its own right.  It has its own LEB properties - that is, the LEB properties of the LEB properties 
area (called ltab).  It has its own form of garbage collection.  It has its own node structure that packs 
the nodes as tightly as possible into bit-fields.  However, like the index, the LPT area is updated 
only during commit.  Thus the on-flash index and the on-flash LPT represent what the file system 
looked like as at the last commit.  The difference between that and the actual state of the file system, 
is represented by the nodes in the journal.

The LPT actually has two slightly different forms called the small model and the big model.  The 

small model is used when the entire LEB properties table can be written into a single eraseblock.  In 
that case, LPT garbage collection consists of just writing the whole table, which therefore makes all 
other  LPT area  eraseblocks  reusable.  In  the  case  of  the  big  model,  dirty  LPT eraseblocks  are 
selected for LPT garbage collection, which consists of marking the nodes in that LEB as dirty, and 
then writing out only the dirty nodes (as part of the commit). Also, in the case of the big model, a 
table of LEB numbers is saved so that the entire LPT does not to be scanned looking for empty 
eraseblocks when UBIFS is first mounted.  In the small model, it is assumed that scanning the entire 
table is not slow because it is small.

One of the main tasks of UBIFS is to access the index which is a wandering tree.  To make that 

efficient, index nodes are cached in memory in a structure called the tree node cache (TNC).  The 

TNC is B+tree that is node-for-node the same as the on-flash index, with the addition of all changes 

made since the last commit.  The nodes of the TNC are called znodes.  Another way to look at that, 

is that a znode when it is on-flash is called an index node, and an index node when it is in memory 
is called a znode.  Initially there are no znodes.  When a lookup is done on the index, just the index 
nodes  that  are  needed are read and added to the  TNC as znodes.   When a znode needs  to be 



changed, it  is marked as dirty which pins it in memory until  the next commit at  which time it 
becomes clean again.  At any time UBIFS memory shrinker may decide to free clean znodes in the 
TNC, so that the amount of memory needed is proportional to the size of the parts of the index that 

are in use, not the total size of the index.  In addition, hanging off the bottom of the TNC is a leaf-

node cache (LNC) which is used only for directory entries (and extended attribute entries).  The 

LNC is needed to cache nodes read as a result of collision resolution or readdir operations.  Because 
the LNC is attached to the TNC it effectively gets shrunk when the TNC does.

The TNC is further complicated by the desire to make the commit have as little impact as possible 
on other UBIFS operations.  To do that, the commit is split into two main parts.  The first part is 

called  commit  start.   During  commit  start  the  commit  semaphore  is  down for writing,  which 

prevents all further updates to the journal.  At that time, the TNC subsystem makes a list of the dirty 
znodes and lays out the positions on flash where they will be written.  Then the commit semaphore 
is released, and a new journal begins to be used, while the commit is still running.  The second part 

of the commit is called commit end.  During commit end, TNC writes the new index nodes but it 

does so without any lock on TNC.  That is TNC can be updated simultaneously as the new index is 
being written to flash.  That is accomplished by marking the znodes which are being committed as 

copy-on-write.  If a znode that is being committed needs to be changed, it is copied so that the 

commit  still  sees  the  unchanged  znode.   In  addition,  the  commit  is  mostly  run  by  UBIFS 
background thread so that user processes wait as little as possible for the commit to run.

Note  that  LPT  follows  the  same  commit  strategy  as  TNC and  they  are  both  wandering  trees 
implemented as B+trees, resulting in a number of similarities in the code of LPT and TNC.

There  are  three  important  differences  between UBIFS and JFFS2.   The first  has  already been 
mentioned: UBIFS has an on-flash index, JFFS2 does not - thus UBIFS is potentially scalable.  The 
second difference is implied: UBIFS runs on top of the UBI layer which runs on top of the MTD 
subsystem, whereas JFFS2 runs directly over MTD.  UBIFS benefits from the wear-leveling and 
error handling of UBI at the cost of the flash space, memory and other resources taken by UBI.  The 

third important difference is that UBIFS allows writeback.

Writeback is a VFS facility that allows written data to be cached and not written immediately to the 
media.  That makes the system more responsive and potentially more efficient because updates to 
the same file can be grouped together.  The difficulty with supporting writeback is that it requires 
that the file system know how much free space is available so that the cache is never bigger than the 
space on the media.  That is very difficult for UBIFS to determine, so an entire subsystem called 

budgeting is dedicated to it.  The difficulties are for several reasons.

The  first  reason  is  that  UBIFS  supports  transparent  compression.   Because  the  amount  of 

compression  is  not  known in  advance,  the  amount  of  space  needed  is  not  known in  advance. 
Budgeting must assume the worst case, and assume that there is no compression.  However, in many 
cases that is a poor assumption.  In order to overcome that, budgeting will begin to force writeback 
when it detects that there is insufficient space.



The second reason that budgeting is difficult is that garbage collection is not guaranteed to be able 
to reclaim all dirty space.  UBIFS garbage collection processes one eraseblock at a time.  In the case 
of NAND flash, only complete NAND pages can be written at a time.  A NAND eraseblock is made 
up of some fixed whole number of NAND pages.  UBIFS calls the NAND page size the minimal 
I/O unit.  Because UBIFS garbage collection processes one eraseblock at a time, if the dirty space is 
less than the minimal I/O size, it cannot be reclaimed - it will end up as padding in the last NAND 
page.  When the dirty space in an eraseblock is less than the minimal I/O size, that space is called 

dead space.  Dead space is not reclaimable.

Similar to dead space is  dark space.  Dark space is when the dirty space in an eraseblock is less 

that the maximum node size.  In the worst case, the file system may be full of nodes of maximum 
size and garbage collection will not result in pieces of free space that are large enough for another 
maximum size node.  So, in the worst case, dark space is not reclaimable, and in the best case it is 
reclaimable.  UBIFS budgeting must assume the worst case and so both dead space and dark space 
and assumed to be unavailable.  However, if  there is insufficient space but a lot of dark space, 
budgeting will itself run garbage collection to see if it reclaims more free space.  

The third reason that budgeting is difficult is that cached data may be obsoleting data stored on 
flash.  Whether or not that is the case is not always known, and what the difference in compression 
may be is certainly not known.  This is another reason that budgeting forces writeback when it 
calculates insufficient space.  Only after trying writeback, garbage collection and committing the 
journal, will budgeting give up and return ENOSPC (the no space error code).

Of course that means that UBIFS becomes less efficient as the file system becomes closer to being 
full.  In fact, all flash file systems become less efficient as the flash fills up.  That is because it is 
less likely that there is an empty eraseblock that has been erased in the background, and more likely 
that garbage collection will have to run.

The fourth reason that budgeting is difficult is that deletions and truncations need to write new 
nodes.  Thus if the file system is really out of space, it  becomes impossible to delete anything 
because there is no room to write a deletion inode node, or a truncation node.  To prevent that 
situation, UBIFS always keeps back a some space and always allows deletions and truncations.

The next UBIFS area to describe is the orphan area.  An orphan is an inode number whose inode 

node has been committed to the index with a link count of zero. That happens when an open file is 
deleted (unlinked) and then a commit is run. In the normal course of events the inode would be 
deleted when the file is closed. However in the case of an unclean unmount, orphans need to be 
accounted for. After an unclean unmount, the orphans' inodes must be deleted which means either 
scanning  the  entire  index  looking  for  them,  or  keeping  a  list  on  flash  somewhere.  UBIFS 
implements the latter approach. 

The orphan area is a fixed number of LEBs situated between the LPT area and the main area. The 



number of orphan area LEBs is specified when the file system is created. The minimum number is 
1. The size of the orphan area should be so that it can hold the maximum number of orphans that are 
expected to ever exist at one time.  The number of orphans that can fit in a LEB is: 
 (leb_size - 32) / 8
For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough. 

Orphans are accumulated in a RB-tree. When an inode's link count drops to zero, the inode number 
is added to the RB-tree. It is removed from the tree when the inode is deleted.  Any new orphans 
that are in the orphan tree when the commit is run, are written to the orphan area in 1 or more 
orphan nodes. If the orphan area is full, it is consolidated to make space.  There is always enough 
space  because  validation  prevents  the  user  from creating  more  than  the  maximum  number  of 
orphans allowed.

The final UBIFS area is the  main area.  The main area contains the nodes that make up the file 

system data and the index.  A main area LEB may be an index eraseblock or a non-index eraseblock. 
A non-index eraseblock may be a bud (part of the journal) or have been committed.  A bud may be 
currently one of the journal heads.  A LEB that contains committed nodes can still become a bud if 
it has free space.  Thus a bud LEB has an offset from which journal nodes begin, although that 
offset is usually zero.



UBIFS Source File List

budget.c budgeting
build.c module initialization, mounting and unmounting
commit.c commit management
compress.c compression management
debug.c debugging self-checks
debug.h debugging self-checks header
dir.c directory operations
file.c file operations
find.c find eraseblocks for various purposes e.g. G.C.
gc.c garbage collection
io.c node I/O
ioctl.c EXT2 compatible extended attribute ioctls
journal.c journal updates
key.h index key related functions
log.c log
lprops.c LEB properties
lpt.c LEB properties tree (LPT)
lpt_commit.c LPT commit
master.c master node
misc.h shared inline functions
orphan.c orphans
recovery.c recovery
replay.c replay
sb.c default file system creation and super block node
scan.c general purpose eraseblock scanner (e.g. used by G.C.)
shrinker.c memory shrinker for TNC
super.c super operations
tnc.c tree node cache (TNC)
tnc_commit.c TNC commit
ubifs.h internal definitions
ubifs-media.h on-flash structures and definitions
xattr.c extended attributes



UBIFS Glossary

B+tree Kind of tree used for UBIFS wandering tree.

base head Journal head used for non-data nodes.  The base head provides 

the integrity and recoverability of UBIFS by keeping all inode 
nodes and directory entry nodes in sequence.

budgeting Estimation of free space.

bud An eraseblock used by the journal.

cnode Either a pnode or an nnode.

commit Process by which the index is updated.

commit start node Node written to the log when a commit starts.

common header Common header of all node types except nodes in the LPT 

area.

data head Journal head used for data nodes.  Potentially UBIFS could 

have more than one data head which would assist in keeping 
data  nodes  for  each  file  grouped  together  rather  than 
interspersed.  However presently there is only one data head.

directory entry node A node that contains a directory entry.

dirty space Space taken up on flash by obsolete nodes, padding nodes and 

padding bytes.

eraseblock The smallest  unit  of  flash memory that can be individually 

erased.

extended attribute entry node A  node  that  contains  the  name  and  inode  number  of  an 

extended attribute (same structure as a directory entry).

freeable LEB A LEB in the main area that contains only free space and dirty 

space.

free space Space on flash that can be written to.

garbage collection The process of reclaiming dirty space to make free space.



garbage collection head Journal head used by the garbage collector.  In order to move 

and reindex nodes, the garbage collector just feeds them back 
through the journal.

garbage collection LEB number LEB reserved for garbage collection (must always be one LEB 

reserved), also known as gc_lnum.

index The top part of the UBIFS wandering tree consisting of index 

nodes.

index LEB A LEB that contains (only) index nodes.

index node A node that forms the structure of the index.  It contains the 

keys and on-flash positions of its child nodes.

inode A file system object.  In UBIFS, an inode may be a regular 

file, a directory, a symbolic link, a special file, or an extended 
attribute (xattr) value holder.

inode node A node that holds the metadata for an inode.  Every inode has 

exactly one (non-obsolete) inode node.

in-the-gaps method When the file system becomes full, the index cannot grow in 

size and consequently must be updated in-place.  This is done 
by writing index nodes in-the-gaps created by obsolete index 
nodes.

JFFS2 Journaling  Flash  File  System 2  which  is  the  quintessential 

linux  flash  file  system,  however  it  is  not  scalable  and  the 
present limit of its usage is 1 GiB.

journal The  journal  is  like  a  miniature  JFFS2  file  system,  storing 

nodes without an on-flash index, so that index updates can be 
grouped altogether.  Like JFFS2 the journal must be scanned 
at mount time.

journal head The position  on-flash  where  the  next  node will  be written. 

UBIFS adopts a multiheaded journal with two main heads: the 
base head and the data head.

key The key to  the  index.   The index stores  the  position of  all 

nodes, and their keys.  A node may be found by looking up its 
key in the index.  The key is a 64-bit value whose first 32 bits 
are the inode number.  The next 3 bits are node type, and the 



remaining 29 bits vary depending on node type.  UBIFS also 
supports the possibility of changing the key format and allows 
for up to 128-bits for the key.

LEB Logical  eraseblock  that  is  mapped to  a  physical  eraseblock 

(PEB) by UBI.

LEB properties Main area LEBs have three important values that are recorded 

about them.  These LEB properties are: amount of free space, 
amount of dirty space, and whether the LEB contains index 
nodes.

LNC Leaf node cache used to store directory entries and extended 

attribute entries

log The part of the journal that records where the buds are.

LPT LEB  properties  tree,  a  wandering  tree  used  to  store  LEB 

properties.

main area LEBs that are used for data and the index.

master node The node that contains the positions of on-flash structures.

minimal I/O unit The smallest  unit  of  flash memory that can be individually 

written.

mkfs.ubifs The userspace program that creates UBIFS images.

MTD Memory Technology Device.  A linux device layer for flash 

memories.

node The logical component of node-structured flash file systems 

like JFFS2 and UBIFS.

nnode Internal node of the LPT.

orphan area Area for storing the inode numbers of deleted by still  open 

inodes, needed for recovery from unclean unmounts.

orphan node The node used to store orphan information.

padding bytes Bytes written when the space to pad is too small for a padding 

node.



padding node A node written to fill space, usually to the edge of a minimal 

I/O unit.

PEB Physical  eraseblock  that  is  mapped  to  a  logical  eraseblock 

(LEB) by UBI.

pnode Leaf node of the LPT which contains the actual LEB property 

values.

recovery The functions by which UBIFS repairs itself after an unclean 

unmount.

replay The  process  by  which  UBIFS  reindexes  the  nodes  in  the 

journal when the file system is mounted.

reference node Log  nodes  that  store  the  LEB  numbers  of  buds  and  their 

offset.

shrinker A linux facility  the requests  that  some memory be  freed if 

possible.  UBIFS has a shrinker that frees clean znodes from 
the TNC.

superblock node The node that records file system parameters that almost never 

change.

TNC Tree Node Cache, UBIFS index in memory.

truncation node A node  that  records  when a  file  is  truncated  and becomes 

smaller.

UBI Unsorted Block Images module  that  provides  wear-leveling, 

bad-block  handling,  and  the  creation  of  logical  volumes 
mapping logical eraseblocks to physical eraseblocks.

UBIFS UBI File System.

unclean unmount When the  file  system does  not  have  a  chance  to  write  all 

cached data and metadata, for example because of a loss of 
power.

wandering tree A tree that moves in a way to allow out-of-place updates.

znode An index node in memory.  Znodes form the TNC.


