UBIFS file system
NOKIA

Adrian Hunter (AopuaH XaHTep)
Artem Bityutskiy (bButiouknin ApTém)

Plan

e Introduction (Artem)

e MTD and UBI (Artem)
 UBIFS (Adrian)

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBIFS scope

 UBIFS stands for UBI file system (argh...)

o UBIFS 1s designed for raw flash devices

o UBIFS 1s not designed for SSD, MMC, SD,
Compact Flash, USB sticks, and so on

e I call them “FTL devices”
* They have raw flash inside, but they are block devices
e They are very different to raw flash devices

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBIFS scope

y ',:,'l D— d':} 1

RN

| URRERAS

*_20B
= e hmapstin
Sonrad Mk .

ultra
wew. chi '-"’E'_ﬂﬁ.ﬁ'

 anisk 2

S12me i

min:
Sandisk 23

Sandisk 3
I':I u
me=2

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBIFS scope

e UBIFS i1s designed for raw flash devices
e E.g. NAND, NOR, OneNAND, etc

o2
v 1193 A" 00!

—
¥

R

‘-.~.n;-';}nn;m.tmulii'

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

FTL device vs. Raw flash

FTL device Raw Flash

Consists of sectors, typically 512 Consists of eraseblocks, typically
bytes 128KiB

Has 2 main operations: Has 3 main operations:
1. read sector 1. read from eraseblock
2. write sector 2. write to eraseblock
3. erase the eraseblock

Bad sectors are hidden and re- Hardware does not manage bad
mapped by hardware eraseblocks

Sectors do not wear-out Eraseblocks wear-out after 10 3-10° erase
operations

4 =

Raw flash and block device are completely different

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

FTL devices

'TL stands for “Flash Translation Layer”

'TL devices have raw flash plus a controller
e Controller runs FTL firmware

e FTL firmware emulates block device

Block I/O interface
(USB mass storage, MMC, etc)

10
10

NAND array

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

FTL devices — cons and pros

One may run trusted traditional software (e.g., ext3)
Standardized

Black box, FTL algorithms are trade secrets

Fast wear-out and death reports

Data corruption reports
Historically designed for FAT FS
Optimized for FAT

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBIFS goals

e Fix JFFS2 scalability 1ssues

e Faster mount
e Fast opening of big files
e Faster write speed

e But preserve cool JFFS2 features
e On-the-flight compression

e Tolerance to power cuts
e Recoverability

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Plan

e Introduction (Artem)

« MTD and UBI (Artem)
 UBIFS (Adrian)

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBI/UBIFS stack

(£s/ubifs)

10
10

MTD

(drivers/mtd/ubi)

(drivers/mtd)

NAND‘ NOR‘ OneNAND ‘ etc

10

Flash hardware
(NAND, NOR, etc)

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

MTD

e MTD stands for “Memory A MTD
Technology Devices”

e Provides an abstraction of MTD Memory Technology Devices
device

 Hides many aspects specific to particular flash

e Provides uniform API to access various types of
flashes

 E.g., MTD supports NAND, NOR, ECC-ed NOR,
DataFlash, OneNAND, etc

* Provides partitioning capabilities

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

MTD API

e In-kernel API (struct mdt_device) and user-space
API (/dev/mtdo)

e Information (device size, min. I/O unit size, etc)
e Read from and write to eraseblocks
e Erase an eraseblock

e Mark an eraseblock as bad
e Check if an eraseblock 1s bad

 Does not hide bad eraseblocks

* Does not do any wear-leveling

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBl

Stands for “Unsorted Block Images”
Provides an abstraction of “UBI volume™

Has kernel API (include/mtd/ubi-user.h) and user-
space API (/dev/ubio)

Provides wear-leveling

Hides bad eraseblocks

Allows run-time volume creation, deletion, and re-
s1ze

Is somewhat similar to LVM, but for MTD devices

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBI/UBIFS stack

(£s/ubifs)

10
10

MTD

(drivers/mtd/ubi)

(drivers/mtd)

NAND‘ NOR‘ OneNAND ‘ etc

10

Flash hardware
(NAND, NOR, etc)

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBI volume vs. MTD device

MTD device

UBI volume

Consists of physical eraseblocks
(PEB), typically 128KiB

Has 3 main operations:
1. read from PEB
2. write to PEB
3. erase PEB

May have bad PEBs

PEBs wear out

MTD devices are static: cannot be
created/deleted/re-sized run-time

Consists of logical eraseblocks (LEB),
slightly smaller than PEB (e.g., 126KiB)

Has 3 main operations:
1. read from LEB
2. write to LEB
3. erase LEB

Does not have bad LEBs - UBI
transparently handles bad PEBs

LEBs do not wear out - UBI spreads the
I/O load evenly across whole flash device
(transparent wear-leveling)

UBI volumes are dynamic — can be
created, deleted and re-sized run-time

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Main idea behind UBI

 Maps LEBs to PEBs
 Any LEB may be mapped to any PEB

e Eraseblock headers store mapping information and
erase count

UBI volume

MTD device

Adrian Hunter, Artem Bityutskiy (BuTtioukunin ApTém

UBI operation example

1. Write data to LEBO

a) Map LEBO to PEB1
b) Write the data

2. Write data to LEB1, LEB4

3. Erase LEB1
a) Un-map LEB1 ... return
b) Erase PEB4 in background

4. Write data to LEB1

LEBO LEB1 LEB2 LEB3 LEB4 LEBS

UBI volume

MTD device H
PEBO PEB1 PEB2 PEB3 PEB4 PEB5 PEB6

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBI bad eraseblock handling

e 1% of PEBs are reserved for bad eraseblock
handling

e If a PEB becomes bad, corresponding LEB 1s re-
mapped to a good PEB

e I/O errors are handled transparently

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Write error handling example

1. User writes data to LEBO ...

a) Select a good PEB to recover the data to ... PEB4

b) Recover the data by copying it to PEB4

c) Re-map LEBO to PEB4

d) Write new data again

e) Recovery is done! Return from UBI

f) Erase, torture and check PEB1 in background ... and mark it as bad

UBI volume

MTD device

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Other

e Handle bit-flips by moving data to a different PEB

* Configurable wear-leveling threshold

e Volume update operation

e Volume rename operation

e Suitable for MLC NAND

Performs operations in background
 Works on NAND, NOR and other flash types

e Tolerant to power cuts

e Simple and robust design

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Atomic LEB change

e Very important for UBIFS

Suppose LEBO has to be atomically updated -

a) Select a PEB ... PEBO

b) Write new data to PEBO

c) Re-map LEBO to PEBO

d) Done! Return from UBI

e) Erase PEB2 in background

UBI volume

MTD device

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBI Scalability issue

* Unfortunately, UBI scales linearly

e UBI reads all eraseblock headers on 1nitialization
Initialization time grows with growing flash size
But 1t scales considerably better than JFFS2
May be improved
UBI2 may be created, UBIFS would not change

Suitable for 1-16Gi1B flashes, depending on 1I/0O
speed and requirements

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Plan

e Introduction (Artem)
e MTD and UBI (Artem)
 UBIFS (Adrian)

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBIFS relies on UBI

e UBIFS does not care about bad eraseblocks and
relies on UBI

 UBIFS does not care about wear-leveling and relies
on UBI

 UBIFS exploits the atomic LEB change feature

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Requirements

Good scalability

High performance
On-the-flight compression
Power-cut tolerance

High reliability

Recoverability

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

File System Index

e Index allows to look-up physical address for any
piece of FS data

File “foo” File “bar”

AB

N

UBI volume

MTD device

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

JFFS2 index

e JFFS2 does not store the index on flash
 On mount JFFS2 fully scans the flash media
e Node headers are read to build the index in RAM

JFFS2 node

Header

wrodevee [T[[TT] [TIT [T JI1

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBIFS index

e UBIFS index 1s a B+ tree

e | eaf level contains data

e Tree fanout is configurable, default is 8

2 Oy

o= T/ﬁl\j/

Leaf level contains FS data

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

UBIFS Index

e UBIFS index 1s stored and maintained on flash
e Full flash media scanning 1s not needed
e Only the journal 1s scanned in case of power cut

e Journal 1s small, has fixed and configurable size

Thus, UBIS mounts fast

Journal /
/—/%

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Out-of-place updates

e Flash technology and power-cut-tolerance require
out-of-place updates

Change “foo” (overwrite A, B, C)
File “/foo”. /A B|C

1. Write “A” to a free space
2. Old “A” becomes obsolete
3. Write “B” to free space

4. Old “B” becomes obsolete
5. Write “C” to free space

6. Old “C” becomes obsolete

I P NG g N D D D

But how about the index? Obsastete Obsolete

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Wandering trees

.

Z

o A H N,
NEW LINE CINEMATSS

An AOL Time Warm:iCu pan:

l‘ .
XY &=
%
i s "

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Wandering trees

. Write data node “D”

. Old “D” becomes obsolete
. Write indexing node “C”

. Old “C” becomes obsolete
. Write indexing node “B”

. Old “B” becomes obsolete
. Write indexing node “A”

. Old “A” becomes obsolete

ONO O WN PP

find the root df th

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Master node

Stored at the master area (LEBs 1 and 2)
Points to the root index node

2 copies of master node exist for recoverability
Master area may be quickly found on mount

e Valid master node 1s found by scanning master area

1. Suppose “R” is changed 6. LEBs 1 and 2 become full
2. Then “M” is updated 7.LEB 1 is erased

3. Old “M” becomes obsolete 8. “M” is written

4. The same is done to the 2™ copy 9. The same for the 2" copy

5. and so on ... EREREERRRN

L
UBIFS | LEBO (M M | R

Master area (LEBs 1 and 2) Root index node

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Superblock

Situated at LEBO
Read-only for UBIFS
May be changed by user-space tools

Stores configuration information like indexing tree
fanout, default compression type (zlib or LZO), etc

e Superblock 1s read on mount

Superblock Master area

UBIFS i | | |

LEBO LEB1 LEB2

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Journal

e All FS changes go to the journal

e Indexing information 1s changed in RAM, but not on
the flash

e Journal greatly increases FS write performance
 When mounting, journal 1s scanned and re-played
e Journal 1s roughly like a small JFFS2 inside UBIFS

e Journal size is configurable and 1s stored in
superblock

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

TNC

Stands for Tree Node Cache
Caches indexing nodes

Is also a B*-tree, but in RAM

Speeds up indexing tree lookup

May be shrunk 1n case of memory pressure

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Journal and TNC

Suppose “A”, “B”, ... “H” have to be changed
Tree Node Cache 1. Change leaf node “A”
(in RAM) 2. Look up the index and populate TNC
3. Write “A” to the journal ... and amend TNC
4. Similarly for “B” and “C”
5. And so on for “D”, “E”, “F”, “G”, and “H”

6. Journal is full - commit

Excuse me, but the journal is still full

Indexing tree
(on Flash)

BICD|E F G

Journal LEBs

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Journal is also wandering

o After the commit we pick different LEBs for the
journal

* Do not move data out of the journal

* Instead, we move the journal

» Journal changes the position all the time

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

More about the Journal

e Journal has multiple heads
e This improves performance
e Journal does not have to be continuous

e Journal LEBs may have random addresses
 LEBs do not have to be empty to be used for journal
* This makes journal very flexible and efficient

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Garbage collection

e At some point UBIFS runs out of free space

* Garbage Collector (GC) 1s responsible to turn dirty
space to free space

 One empty LEB 1s always reserved for GC

Obsolete data (Dirty space) Valid FS data Valid indexing data Reserved for GC

CITID I TE

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

How GC works
e GC copies valid data to the journal (GC head)

Pick a dirty LEB ... LEB1 TNC

. Copy valid data to LEB6
LEB1 may now be erased
Pick another dirty LEB ... LEB7

Copy valid data to LEB 6

LEB 7 now may be erased

LEB 1 is reserved for GC, LEB7 is available

. How about the index?

10. Indexing nodes are just marked as dirty in TNC
11. But what if there is no free space for commit?

I —
R EENEN (URNEN 0.

LEBO LEB1 LEB2 LEB3 LEB4 LEBS LEBG6 LEB7Y

1.
2

3.
4.
5.
6.
8.
9

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Commit

Commit operation is always guaranteed to succeed

For the index UBIFS reserves 3x as much space
In-the-gaps commit method 1s used

Atomic LEB change UBI feature 1s used

Reserved

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

LEB properties

o UBIFS stores per LEB-information of flash

 LEB type (indexing or data)
 Amount of free and dirty space

e Overall space accounting information 1s maintained
on the media

e Total amount of free space
e Total amount of dirty space
e Etc

e Used e.g., when

e A free LEB should be found for new data
e A dirty LEB should be found for GC

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

LPT

Stands for LEB Properties Tree

Is a B*-tree

Has fixed size

Is much smaller than the main indexing tree

Managed similarly to the main indexing tree

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Requirements

e Good scalability

e Data structures are trees

e Only journal has to be replayed
e High performance

e Write-back
Background commit
Read/write 1s allowed during commit
Multi-head journal minimizes amount of GC
TNC makes look-ups fast
LPT caches make LEB searches fast

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

Requirements

On-the-flight compression

Power-cut tolerance

e All updates are out-of-place
* Was extensively tested

High reliability
» All data 1s protected by CRC32 checksum
e Checksum may be disabled for data
Recoverability

e All nodes have a header which fully describes the node
* The index may be fully re-constructed from the headers

Adrian Hunter, Artem Bityutskiy (Butioukuin ApTém)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

